Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus.
نویسندگان
چکیده
OBJECTIVES The susceptibility of clinical isolates of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), to host-derived cationic antimicrobial peptides was investigated. METHODS We examined the susceptibility of 190 clinical strains of methicillin-susceptible S. aureus (MSSA) and 304 strains of MRSA to two different classes of cationic antimicrobial peptides: LL-37 and human beta-defensin-3 (hBD3). Out of the total 494 clinical strains, a random selection of 54 S. aureus strains was examined to establish the relationship between the net charge, or zeta potential, of each strain and its susceptibility to hBD3 or LL-37. To further confirm bacterial susceptibility to either hBD3 or LL-37, we concurrently measured: (i) percentage survival after in vitro bacterial exposure and (ii) MBCs for both MRSA and MSSA strains. RESULTS Of the 54 randomly selected S. aureus strains, those MRSA strains resistant to LL-37 showed significantly higher zeta potentials than those susceptible to LL-37 (P < 0.05). In contrast, there was no difference in bacterial zeta potentials for MRSA strains that showed either resistance or susceptibility to hBD3. In addition, resistance to LL-37, but not to hBD3, as determined by either percentage survival or MBC, was significantly elevated in highly methicillin-resistant strains of S. aureus when compared with MSSA strains (P < 0.01). CONCLUSIONS Clinical strains of MRSA, but not MSSA, that demonstrated an increased net charge also showed elevated resistance to LL-37, but not to hBD3.
منابع مشابه
Detection of Methicillin-resistant Staphylococcus aureus according to mecA and femA Genes Among Hospitalized Patients in Kashan and Isfahan Hospitals
Background and Aim: Increased prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and treatment of infections due to these resistant strains is one of the most important health challenges. In this study, antimicrobial resistance patterns of Staphylococcus aureus isolates from patients were determined to commonly prescribed and last-resort antibiotics, and methicillin-resistant Stap...
متن کاملBicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants.
Objectives Staphylococcus aureus small colony variants (SCVs) cause persistent infections and are resistant to cationic antibiotics. Antimicrobial peptides (AMPs) have been suggested as promising alternatives for treating antibiotic-resistant bacteria. We investigated the capacity of the human cationic AMP LL-37 to kill SCVs in the presence of physiological concentrations of bicarbonate, which ...
متن کاملPCR-mediated identification of Methicillin and Vancomycin resistant genes in Staphylococcus aureus strains isolated from the nasal cavity
Staphylococcus aureus is colonized in the human nasal cavity and would contaminate hospital and therapeutic environments. This bacterium has a genetic diversity in terms of resistance to antimicrobial agents. Therefore, the purpose of this study was identificatied of Methicillin and Vancomycin resistant genes in Staphylococcus aureus strains which has been isolated from the nasal cavity. 189 pa...
متن کاملHuman cathelicidin LL-37 resistance and increased daptomycin MIC in methicillin-resistant Staphylococcus aureus strain USA600 (ST45) are associated with increased mortality in a hospital setting.
Bacteremia caused by methicillin-resistant Staphylococcus aureus (MRSA) USA600 has been associated with increased patient mortality. We found that USA600 MRSA exhibited significantly increased resistance to human cathelicidin LL-37 killing and daptomycin MIC creep compared to non-USA600 MRSA. Virulent health care-associated MRSA strains may coevolve innate host defense peptide and antibiotic re...
متن کاملBeta-Lactamase Repressor BlaI Modulates Staphylococcus aureus Cathelicidin Antimicrobial Peptide Resistance and Virulence
BlaI is a repressor of BlaZ, the beta-lactamase responsible for penicillin resistance in Staphylococcus aureus. Through screening a transposon library in S. aureus Newman for susceptibility to cathelicidin antimicrobial peptide, we discovered BlaI as a novel cathelicidin resistance factor. Additionally, through integrational mutagenesis in S. aureus Newman and MRSA Sanger 252 strains, we confir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 61 6 شماره
صفحات -
تاریخ انتشار 2008